
training

© Ulrik Hagström 2012

ulrik.hagstrom@datalink.se (+46-701-844551)

Goals

• Basic understanding of CAN
- Understand basic such as identifier, datafield, prioritaztion using
arbitration and error handling.

• Understand the product sheet of a CANopen device.
- Understand the basic buzzwords. Learn what to expect and what to
look for!

• Please ask questions
- There are no stupid questions!

• Take next step ?
- Suit your needs?

2012-11-18 2

Agenda

• ’Basic’ CAN (1)
- History, application examples,CAN frame, priority, characteristics.
• Market
- Vendor companies, CANopen in practice.
• Basic CANopen (1)
- Hisory, keywords, communcation layer...,
• CANopen design (1)
- Tools, files.
• Advanced CAN (2)
-Signal levels, calculations, error handling in detail, registers.
• ?

2012-11-18 3

Part 1: Basic CAN

Industrial
automation

(noise-
critical env.)

Automotive (low cost,
reliable, volumes)

Small networks2012-11-18 4

Building
automation

(designed for
control)

CAN milestones

1986 - Robert Bosch GmbH
requested by Mercedes. 1987 - The first CAN silicon

fabricated in by Intel.
1988 - CAN available for

everybody.
1991 - Mercedes S

1993 – ISO 11898
specification.

2012-11-18 5

1998 – Volvo S80

Physical CAN network

2012-11-18 6

Additional wires: 24 V + ground + sheild.

(most cases) Diffetential = Twinned CAN HI / CAN LO for best results!

Important numbers
• ~ Max 110 nodes on one physical network.

• 1 Mbps 40 m.
5 Kbps 10 000 meters.

• 1 bit error each 0.7 s, 500 kbit/s, 8h / day, 365
days / year statistical average: 1 undetected
error in 1000 years (24h: 333 years)

2012-11-18 7

Transmit / Receive
• CAN message contains:

- identifier (also implements priority)
- Data (0-8 bytes)
- CRC checksum and other error protection data fields.

8

• Multi-master capability
- Any CAN node may send a message if bus is idle using
non destructive bus arbitration.

• Network wide data consistency
- All receiving nodes decide if they like to accept the
message but no target receive guarantees to transmitter.

- Needs to be interpreted by higher layer protocol (HLP).

Transmit / Receive

2012-11-18 9

Identifier
Data

2012-11-18 10

EXT/RTR control bits

0x134

RTR=1 dlc=8

0x134 Temp 1 Temp 2

RTR=0 dlc=8

0x000 00134 Temp 1 Temp 2

EXT=1 dlc=8

EXT – Extended (turns the identifier into 29 bits instead of 11 bits)

RTR- Remote Transmit Request (does not attach any data)

0x134 Temp 1 Temp 2

EXT=0 dlc=8

11 bits 29 bits

Error handling
•Error checks are done by all nodes (transmitter
do bit monitoring, receiver verifies CRC, form bit and
more…)

•A CAN message is accepted by all nodes or
no node (network wide consistency).

•Automatic retransmission on error. (Babbling
idiot goes error “passive”)

2012-11-18 11

Collision resolution

• Collision Resolution is handled using
priorities (“non destructive arbitration”).

• Collisions never happens because:
CSMA/CR = Carrier Sense Multiple Access

Collision Resolution

2012-11-18 12

Non destructive arbitration

t0 t1
T

t0 Both “Node A” and “Node B” consider bus idle.
t1 Both nodes start transmit “SOF” (Start of frame)
t2 “Node A” transmits dominant bit and “Node B” recessive,

and “Node A” wins the arbitration.

(arbitration field = identifier + rtr-bit)

t2

2012-11-18 13

Part 2: CANopen agenda

• Short history.
• Communication model, COBID addressing.
• Object Dictionary (OD).
• Service Data Object (SDO).
• Process Data Object (PDO).
• Error Control Protocol, Emergency Protocol (EMCY).
• Device Profiles (CANopen “plug and play”).
• Design flow, EDS, DCF, Configuration Management.
• Multiplex PDO, Time Stamp.

2012-11-18 14

What is CANopen ?

• Machine automation mainly.
• Higher level protocol (HLP) based on

CAN. Ethernet is on it’s way!
• Developed by CiA (CAN in Automation,

can-cia.org, non-profit, 500+ members).
• Open and vendor independent.

1994 CAL/Philips Medical
adopted by CiA.

1995 CANopen DS-301 v.2.0
2006 CANopen DS-301 v.4.1

2012-11-18 15

• Device profiles give high abstraction for
programmer (HW under development?)

• Easy access to all device parameters.
• (Inter-)device syncronization (node to node)
• Cyclic and event driven transfer.
• Sync read inputs, set outputs.

2012-11-18 16

Features

2012-11-18 17
http://www.cia-productguides.org/

Protocol stacks Controller hardware

Device Profile Product
s

Generic I/O 76

Servo drives 42

Encoders 27

Vendor companies

CANopen in practice

2012-11-18 18

http://vimeo.com/46874684

Advantages using CANopen

reasonable prices.→ CANopen unburdens dealing with
CAN-specific details.

→ Standardized highly
flexible configuration.

→ Off-the-shelf devices, tools,
and protocol stacks at reasonable

prices.

→ CANopen device profiles
enable "plug and play“.

2012-11-18 19

Device Profiles
CiA 401 Generic I/O Modules
CiA 402 Drives and Motion Control
CiA 404 Measuring devices and Closed Loop Controllers

CiA 405 IEC 61131-3 Programmable Devices

CiA 406 Rotating and Linear Encoders
CiA 408 Hydraulic Drives and Proportional Valves

CiA 410 Inclinometers
CiA 412 Medical Devices
CiA 413 Truck Gateways
CiA 414 Yarn Feeding Units (Weaving Machines)

CiA 415 Road Construction Machinery
CiA 416 Building Door Control
CiA 417 Lift Control Systems
CiA 418 Battery Modules
CiA 419 Battery Chargers
CiA 420 Extruder Downstream Devices
CiA 422 Municipal Vehicles – CleANopen
CiA 423 Railway Diesel Control Systems
CiA 424 Rail Vehicle Door Control Systems
CiA 425 Medical Diagnostic Add-on Modules

CiA 445 RFID Devices

2012-11-18 20

www.can-cia.org

• DS-301 Communication profile, “basic parts
of CANopen”.

• DS-302 Framework for programmable
CANopen devices (boot up,
configuration manager).

• DS-306 EDS (Electronic data sheet, template),
DCF (Device configuration file, values)

• DS-4xx Device profiles (“plug and play I/O,
servo etc, HMI”)

2012-11-18 21Copyright Ulrik Hagström 2010

Example CANopen network

I/O PID reg. Temp
sensor

Pneumatic

Process
computer

Network nodes

120 Ohm 120 Ohm

• All nodes have a node id value (1-127, 0 is broadcast adress)
•All nodes are addressed via default connection set (base + node id).

Config
tool

I/O

2012-11-18 22

2 wire shielded twisted pair cable (alt. 4 wire with 24 Volt power over the bus).

2012-11-18 23

COBID

COBID
COB, but
we call it
COBID for
now!
(COBID is
32 bits, this
is at most
29bits, the
upper 3 bits
are control
bits).

Data

Node functionality

Process computer Network node

Configuration tool

Node IDNode ID

2012-11-18 24

Network initialization process

1. All nodes initializes and enter pre-operational state after power on.
2. Process compter configures the nodes (paramter configuration).
3. Process compter sets nodes in operational state (module control).

Process
computer

param. conf. is always
point-to-point.

120
Ohm

120
Ohm

2012-11-18 25

Module control can be broadcast.

State Description
Initialization Initialization at power on the CANopen slave (with minimum boot-up

capability) performs an initialization sequence and enters automatically into
the Pre-Operational state.

Pre-operational Parameter configuration.
Node guarding and respond to node-guarding protocol.

Stopped Node is disabled, no communication except node guard response.

Operational Have it’s process data channels active. Have parameter conf. channels active.
Send emergency messages on an error event .

2012-11-18 26

Running network

1. Process computer monitor operational state of nodes.
2. Process data can be sent from process computer to network nodes or

between network nodes directly.

Process
computer Network nodes

120
Ohm

120
Ohm

2012-11-18 27

Node functionality

Process computer Network node

Configuration tool

Node ID Node ID
Object

Dictionary
Object

Dictionary

2012-11-18 28

Object Dictionary

120
Ohm

120
Ohm

2012-11-18 29

OD = ”parameter configuration area”

Object Dictionary

• Ordered grouping of objects
(object index + subindex)

• OD describes the device and network behaviour.

• Some of the OD entries are
mandatory (quite few, allows lean implementations)

• EDS-file describes your nodes OD (306)

2012-11-18 30

Object Dictionary
Object Index Sub Index Data Type Bit contents Description
0x1000 0 UINT32 Device Type.

Byte 1 Device Profile.

Byte 2

Byte 3 Additional info.

Byte 4

0x1001 UINT8 Error Register (Read error type on node).

0x1002 UINT32 Manufacturer status register.

0x1003 UINT32 Predefined error field.

0x1004 Reserved (for number of PDOs?)

0x1005 UINT32 COBID SYNC

0x1006 UINT32 Communication cycle period.

...

0x1008 STRING Device name.

0x1009 STRING Hardware version.

0x100A STRING Software version.

0x100B Reserved (for setting new node ID?)

0x100C UINT16 Guard time

0x100D UINT8 Lifetime factor2012-11-18 31

Access to local Object Dictionary

Application

CANopen API

Object Dictionary

CANopen protocol stack

CAN hardware Abstraction Layer (HAL)

CAN device driver

CAN hardware CAN hardware

CAN bus

2012-11-18 32

Application

CANopen API

Object Dictionary

CANopen protocol stack

CAN hardware Abstraction Layer (HAL)

CAN device driver

CAN hardware

Parameter configuration via CAN-bus?

2012-11-18 33

Node functionality

Process computer Network node

Configuration tool

Node ID Node ID

Object
Dictionary

Object
Dictionary

SDO
server

SDO
client

SDO
client

SDO
server

2012-11-18 34

Service Data Object (SDO)

• Mainly used for parameter configuration of remote node.

•Transfer protocol for parameters (also FW upgrade).

dlc = 8
rtr = 0

COBID y

Client Server

COBID q

dlc = 8
rtr = 0

2012-11-18 35

Service Data Object (SDO)

SDO Client (0 – 128)
• Provides access (R/W) to OD of a remote node.

• Resides in nodes that needs to access other nodes OD,
usually only the network Master node (configuration manager).

SDO Server (1 – 128)
• Responds to SDO client read/write.

• Mandatory to implement at least one.

2012-11-18 36

SDO transfer protocols

Expedited transfer

1 to 4 bytes

Segmented transfer (“normal transfer”)

More than 4 bytes (64 bits value and string for example)

Block transfer

More bandwidth efficient than segmented transfers but “do the same
thing”.

2012-11-18 37

The SDO transfer protocols
(Expedited-, Segmented- or Block-transfer)

Client: Initiate SDO download request
(ex. 3 bytes) to index 0x1234 and
subindex 0x5 (e=1 (expedited), s=1,
n=1 (length = 4 -n), d = 61 62 63).

Expedited Download (“write node OD”)

Server: Initiate SDO download response
(OK for index x, subindex y).

CAN trace (node 3, index 1234, subindex 05)

00000603 23 34 12 05 61 62 63 00
00000583 23 34 12 05 00 00 00 00

2012-11-18 38

If 24 bit value: 0x636261

The SDO transfer protocols
(Expedited-, Segmented- or Block-transfer)

Server: Initiate SDO upload response
(ex: 4 byte: e=1 (expedited), s = 1,
n=0 ► length = 4 byte (formula p. 9.24),
d = 10 20 30 40).

CAN trace (node 3, index 4567, subindex 0E)Expedited Upload (“read node OD”)

Client: Initiate SDO upload request
(ex: index = x, subindex = y).

00000603 40 67 45 0E 00 00 00 00
00000583 42 67 45 0E 10 20 30 40

2012-11-18 39

If 32 bits value: 0x40302010

The SDO transfer protocols
(Expdited-, Segmented- or Block-transfer)

Client: Initiate SDO download request
index 0x1235 and subindex 0x5 (ex: 9
bytes - e=0 (not expedited), s=1 (size
given), d = 9 (lenght)).

Server: Initiate SDO download response
(OK).

Client: Download SDO segment request
(t = 0 (toggle) c = 0 (more segments), n=7).

Client: Download SDO segment request
(t = 1 (toggle) c = 1 (no more segments),
n=2).

Server: Download segment
response (t = 0 (toggle))

Server: Download segment
response (t = 1 (toggle))

Segmented Download (“write node OD”)

00000603 21 35 12 05 09 00 00 00
00000583 60 35 12 05 00 00 00 00
00000603 00 31 32 33 34 35 36 37
00000583 20 00 00 00 00 00 00 00
00000603 1B 38 39 00 00 00 00 00
00000583 30 00 00 00 00 00 00 00

CAN trace (node 3, index 1235, subindex 05)

2012-11-18 40

The SDO transfer protocols
(Expdited-, Segmented- or Block-transfer)

Server: Initiate SDO upload response
(ex: 5 bytes: e=0 (not expedited), s = 1,
d = 5).

Client: Upload SDO segment request
(ex: t = 0 (toggle)).

Server: Download SDO segment response
(t = 0 (toggle) c = 1 (no more segments),
n=5, data = 00 01 02 03 04).

Segmented Upload (“read node OD”)

Client: Initiate SDO upload request
(ex: index = 0x5678, subindex = 0x5).

00000603 40 78 56 07 00 00 00 00
00000583 41 78 56 07 05 00 00 00
00000603 60 00 00 00 00 00 00 00
00000583 05 00 01 02 03 04 00 00

CAN trace (node 3, index 0x5678, subindex 0x07)

2012-11-18 41

The SDO transfer protocols
(Expdited-, Segmented- or Block-transfer)

Server: Initiate SDO block download
response with given (5) max number of
segments per block…

Block transfer Download (“write node OD”)

Client: Initiate SDO block download
request (ex: index = x, subindex = y).

1st …

2nd …
3rd …
4th …
5h …

Client: SDO block download 1st block
segment (sequence numbering).

Client: SDO block download response.

00000603 C2 34 12 05 3E 00 00 00
00000583 A0 34 12 05 05 00 00 00
00000603 00 54 68 69 73 20 73 74
00000603 01 72 69 6E 67 20 68 61
00000603 02 73 20 62 65 65 6E 20
00000603 03 73 65 6E 74 20 76 69
00000603 04 61 20 43 41 4E 6F 70
00000583 A2 04 05 00 00 00 00 00
00000603 00 65 6E 20 42 4C 4F 43
00000603 01 4B 20 54 52 41 4E 53
00000603 02 46 45 52 20 50 52 4F
00000603 83 54 4F 43 4F 4C 00 00
00000583 A2 03 05 00 00 00 00 00
00000603 C5 00 00 00 00 00 00 00
00000583 A1 00 00 00 00 00 00 00

CRC

Auto
repeat

2012-11-18 42

The SDO transfer protocols
(Expdited-, Segmented- or Block-transfer)

Client: Initiate SDO block upload
request (ex: index = x, subindex = y)
with given (6) max segments per block.

Server: SDO block upload
(sequence number 1)

Block transfer Upload (“read node OD”)

2nd …
3rd …
4th …
5th …
6h …

Client: SDO block upload response.

1st …

CAN trace N/A

2012-11-18 43

Setup communication

Application

CANopen API

Object Dictionary

CANopen protocol
stack

CAN hardware Abstraction Layer (HAL)

CAN device driver

CAN hardware

Node 1

Application

CANopen API

Object Dictionary

CANopen protocol
stack

CAN hardware Abstraction Layer (HAL)

CAN device driver

CAN hardware

Node 15

A) Node 1 configures one of it’s SDO client (in this example SDO client 1) to connect
to the SDO server 1 (default SDO server) on node 15.

B) Node 1 starts the read/write operation via the CANopen API using SDO client no.1.
C) Node 15’s Server SDO 1 responds to the request.

A

B

C

2012-11-18 44

Default connection set

Object COBID

Broadcast Network Management (NMT) 0x000

Synchronization (SYNC) 0x080

Emergency (EMCY) 0x080 + NodeId

Transmit PDO 1 0x180 + NodeId

Receive PDO 1 0x200 + NodeId

Transmit PDO 2 0x280 + NodeId

Receive PDO 2 0x300 + NodeId

Transmit PDO 3 0x380 + NodeId

Receive PDO 3 0x400 + NodeId

Transmit PDO 4 0x480 + NodeId

Receive PDO 4 0x500 + NodeId

Server SDO (TX) 0x580 + NodeId

Server SDO (RX) 0x600 + NodeId

Module error control, boot-up protocol, heartbeat etc. 0x700 + NodeId

2012-11-18 45

Object Dictionary
Object Index Sub Index Data Type Bit contents Description
0x1020 Verify configuration.

0x1 UINT32 Configuration Date

0x2 UINT32 Configuration Time

0x1028 Emergency Consumer

0x1 – 0x7f UINT32 Emergency Consumer COBID (1 – 127)

0x1200 – 0x127f SERVER SDO SERVER SDO 1 – 128

0x1 UINT32 COBID Client to server (RX)

0x2 UINT32 COBID Server to client (TX)

0x3 UINT8 Node Id of the SDO client

0x1280 – 0x13ff CLIENT SDO CLIENT SDO 1 – 128

0x1 UINT32 COBID Client to server (TX)

0x2 UINT32 COBID Server to Client (RX)

0x3 UINT8 Node Id of the SDO server

2012-11-18 46

Connect masters client SDO 1 to
default server on node 15.

Object Index Sub Index Data Type Bit contents Description
0x1028 Emergency Consumer

0x1 – 0x7f UINT32 Emergency Consumer COBID (1 – 127)

0x1200 – 0x127f SERVER SDO SERVER SDO 1 – 128

0x1 UINT32 COBID Client to server (RX)

0x2 UINT32 COBID Server to client (TX)

0x3 UINT8 NodeId of the SDO client

0x1280 – 0x13ff CLIENT SDO CLIENT SDO 1 – 128

0x1 UINT32 COBID Client to server (TX)

0x2 UINT32 COBID Server to Client (RX)

0x3 UINT8 Node Id of the SDO server

Client SDO 1 is found at
object index 0x1280.

According to default connection set
the slave’s default SDO server RX
on COBID ”0x600 + 15” and therefore
we shall configure or Client SDO 1 to
TX on that COBID.

According to default connection set
the slave’s default SDO server was TX
on COBID ”0x580 + 15” and therefore
we shall configure or Client SDO 1 to
RX on that COBID.

15

2012-11-18 47

Result of SDO client configuration

Node id 15

2012-11-18 48

Client SDO COBID TX == Server SDO COBID RX
Client SDO COBID RX == Server SDO COBID TX

If more nodes and more
Client SDOs are available…

Client SDO 1Client SDO 2

Id = 7 Id = 15

CANopen master can have up to 128 client SDOs
(=128 connections)2012-11-18 49

Configure a SDO connection

Object Index Sub Index Data Type Description +Value
0x127f SERVER SDO SERVER SDO 128

0x1280 0x0 CLIENT SDO CLIENT SDO 1 (subIdx == 3)

0x1 UINT32 0x600 + 15 (COBID Client to server (TX))

0x2 UINT32 0x580 + 15 (COBID Server to Client (RX))

0x3 UINT8 15

0x1281 0x0 CLIENT SDO CLIENT SDO 2 (subIdx == 3)

0x1 UINT32 0x600 + 7 (COBID Client to server (TX))

0x2 UINT32 0x580 + 7 (COBID Server to Client (RX))

0x3 UINT8 7

– 0x13ff CLIENT SDO 128

Connect Client SDO to connect to default SDO of remote node 15 & 7.

2012-11-18 50

Process Data Object (PDO)

• Sent in run-time to control the running process.

• Carry the real time process data

2012-11-18 51

2 types of PDOs

Transmit PDO

Receive PDO

2012-11-18 52

Node functionality

Process computer Network node

Configuration tool

Node ID Node ID

Object
Dictionary

Object
DictionarySDO

client

SDO
server

SDO
server

SDO
client

Transmit
PDO

Receive
PDO

Transmit
PDO

Receive
PDO

2012-11-18 53

PDO decoding example

PDO5 32 I/O inputs

0x134 3412 34 554b 0053 0c

PDO Communication parameters (OD)

16 bit
pressur
e

16 bit
rpm

PDO Mapping Parameters (OD)

3412 34 554b 0053 0cPDO5

CAN frame

Application
Data

Mapping
example
later...

2012-11-18 54

Types of PDOs

• Event driven
• Timer driven

• Remotely requested
• Synchronized

2012-11-18 55

Event driven TPDO
(can cause delay problem)

= PDO sent from upon event (I/O input change)

= PDOs sent from other nodes (not delayed)

CANopen network

= Events that trig to be sent

= Events that trig to be sent

I/O change (Event)

CAN bus

2012-11-18 56

Event driven TPDO with inhibit time
(solves the event burst problem)

CAN bus configuration

CAN bus

Inhibit timer active

= PDO sent from upon event (I/O input change)

= PDOs sent from other nodes (luckily not delayed)

= Events that trig to be sent

= Events that trig to be sent

= Pending inhibit time timer

I/O change (Event)

2012-11-18 57

Timer driven PDO transfer

CAN bus configuration

I/O change (Event)

CAN bus

Event Timer pending

= PDO sent from upon event (I/O input change)

= PDOs sent from other node.

= Events that trig to be sent

= Events that trig to be sent

= Pending Event timer

2012-11-18 58

Remotely requested PDO

Remotely requested
Minimum temp

Temp

= Temp PDO sent from temp node if the value passes a ”Minimum temp” or it gets requested by master.

= Remote request PDO sent from master (can be sent at any time)

0x134 Temp 1 Temp 20x134

RTR=1 dlc=8 RTR=0 dlc=8

2012-11-18 59

Temperature sensor (uint8)

Preasure sensor (uint16)

Water speed sensor (uint32)

PDO mapping example (1/6)

CAN bus

CANopen network node

2012-11-18 60

PDO mapping example (2/6)

Register the programming variables in
the Object Dictionary of the node.

Object Index Sub Index Data Type Bit contents Description
0x2200 0 UINT8 TEMP
0x2201 1 UINT16 PREASURE SENSOR
0x2201 2 UINT32 WATER SPEED

2012-11-18 61

PDO mapping example (3/6)

Object Index Sub Index Data Type Description
0x1a00 TPDO MAP Transmit PDO1 mapping parameters.

0x1a01 TPDO MAP Transmit PDO2 mapping parameters

0x0 UINT8 Number of objects to map.

0x1 UINT32 0x2200-00-08

0x2 UINT32 0x2201-01-16

0x3 UINT32 0x2201-02-32

0x1a02 TPDO MAP Transmit PDO3 mapping parameters

0x1a03 TPDO MAP Transmit PDO4 mapping parameters

… -0x1bff TPDO MAP Transmit PDOn mapping parameters

Object Index object to map Sub Index object to map Length of object to map

16 bit 8 bit 8 bit

Object Index Sub Index Data Type Bit contents Description
0x2200 0 UINT8 TEMP

0x2201 1 UINT16 PREASURE SENSOR A1

0x2201 2 UINT32 WATER SPEED

2012-11-18 62

PDO mapping example (4/6)

Object Index Sub Index Data Type Bit contents

0x1a01 0 UINT8 3

0x1a01 1 UINT32 0x2200-00-8

0x1a01 2 UINT32 0x2201-01-16

0x1a01 3 UINT32 0x2201-02-32

COBID TEMP PREASURE
SENSOR A1

WATER SPEED

1 byte 2 byte 4 byte

7 byte

3

2012-11-18 63

PDO mapping example (5/6)
Object Index Sub Index Data Type Description
0x1600 – 0x17ff RPDO MAP Receive PDO mapping (RPDO1 - ...)

0x1 – 0x40 UINT32 PDO mapping for n-th object to be mapped.

0x1800 0x0 – 0x5 PDO COMM PARAMS Transmit PDO 1 Communication Parameters.

0x1801 0 UINT8 Transmit PDO 2 Communication Parameters (SubIdx 0 == 5.)

0x1 UINT32 COBID

0x2 UINT8 Transmission Type.

0x3 UINT16 Inhibit Time.

0x4 - Comp ability entry.

0x5 UINT16 Event Timer

0x1802 Transmit PDO 3 Communication Parameters.

… 0x1 – 0x40 UINT32 Transmit PDO n Communication Parameters.

COBID TEMP PREASURE
SENSOR A1

WATER SPEED

1 byte 2 byte 4 byte

7 byte2012-11-18 64

PDO mapping example (6/6)
Object Index Sub Index Data Type Bit contents

0x1a01 0 (no. objects to me mapped) UINT8 3

0x1a01 1 (1st object to be mapped) UINT32 0x2200-00-8

0x1a01 2 (2nd object to be mapped) UINT32 0x2201-01-16

0x1a01 3 (3rd object to be mapped) UINT32 0x2201-02-32

3

Object Index Sub Index Data Type Bit contents

0x1801 1 (COBID) UINT32 0x123

0x1801 2 (Transmission type) UINT8 254

0x1801 3 (Inhibit time) UINT16 100 (*10us)

0x1801 4 () 0 0

0x1801 5 (Event timer) UINT16 1000 (*1ms)

0x123 TEMP PREASURE
SENSOR A1

WATER SPEED

1 byte 2 byte 4 byte

7 byte

+

=

2012-11-18 65

Sync “pulse” for sync PDO

Object Parameter
0x1005 COB-ID (Bit 30: consumer/producer flag)
0x1006 Communication cycle period

Sync COBID

dlc = 0

Sync Producer Sync consumer(s)

2012-11-18 66

Node functionality

Process computer Network node

Configuration tool

Node ID Node ID

Object
Dictionary

Object
DictionarySDO

client

SDO
server

SDO
server

SDO
client

Transmit
PDO

Receive
PDO

Transmit
PDO

Receive
PDO

Sync
Producer

Sync
Consumer

Sync
Consumer

2012-11-18 67

Sync of TPDO

SYNC

Sample all
objects

mapped in
sync TPDO

SYNC

Sample all
objects

mapped in
sync TPDO

SYNC

Sample all
objects

mapped in
sync TPDO

Comm cycle period Comm cycle period

2012-11-18 68

Sync of RPDO

SYNC SYNC

”Buffer”

SYNC

”Buffer”

SYNC

”Buffer”

Application
actuate

Application
actuate

Application
actuate

2012-11-18 69

PDO transmission type

Transm.
Type

Meaning for a transmit PDO Meaning for a receive PDO

0 Sent on next SYNC if event or request
has been made.

Application updated on next SYNC.

1 < n < 240 Sent on every n SYNC Application updated on next SYNC.

241 <= n <
252

UNDEFINED UNDEFINED

252 Sent on next SYNC if PDO has been
requested.

UNDEFINED

253 Sent independent of SYNC upon request. UNDEFINED

254 -255 Sent independent of SYNC in all cases Application is updated upon
reception of PDO

2012-11-18 70

Error Control Protocols

• Node Guarding Protocol

• Heartbeat Protocol

• Bootup Protocol

2012-11-18 71

Node Guarding Protocol

dlc = 1
rtr = 1

0x700+node id

NMT
Master

NMT
Slave

0x700+node id

dlc = 1
rtr = 0

Node state

Name Description

Node guard time Period time guard request.

Node life time =”Life time factor” * ”Node guard time”.
If no response from Slave node – node considered dead
(Node guard event is trigged).

Life Guard Event Event trigged if NMT slave has not been polled within
”Node Life time” (jumps to pre-operational mode).

Node Guard Event Event trigged if node guard time time has elapsed and no
response from slave.

2012-11-18 72

CAN trace (node 2)

00000702 R [no data]
00000702 81
00000702 R [no data]
00000702 01
00000702 R [no data]
00000702 81

Heart Beat Protocol
Heartbeat
consumer

Heartbeat
producer

0x700+node id

dlc = 1
rtr = 0

Node stater

0x700+node id

dlc = 1
rtr = 0

Node stater

Heartbeat
Producer
time

Bang!

Heartbeat
event

Heartbeat
Producer
time

2012-11-18 73

Node functionality

Process computer Network node

Configuration tool

Node ID
Node ID

Object
Dictionary

Object
DictionarySDO

client

SDO
server

SDO
server

SDO
client

Transmit
PDO

Receive
PDO

Transmit
PDO

Receive
PDO

Sync
Producer

Sync
Consumer

NMT
Master

NMT
Slave

Heartbeat
Consumer

Heartbeat
Producer

2012-11-18 74

Bootup Protocol

0x700+nodeId 0

dlc = 1

NMT slave
NMT Master &

Heartbeat
consumers

From state initialising to
pre-operational

2012-11-18 75

Module Control Protocols

0x0 CS

dlc = 2

NMT Master
NMT Slave(s)

NodeId

CS (Command Specifier) Command

1 Start Remote Node

2 Stop Remote Node

128 Enter Pre-Operational Mode

129 Reset Node

130 Reset Communication

2012-11-18 76

Node functionality

Process computer Network node

Configuration tool

Node ID
Node ID

Object
Dictionary

Object
DictionarySDO

client

SDO
server

SDO
server

SDO
client

Transmit
PDO

Receive
PDO

Transmit
PDO

Receive
PDO

Sync
Producer

Sync
ConsumerSync

Consumer

NMT
Master

NMT
Slave

2012-11-18 77

Node functionality

Configuration tool

Node ID
Node ID

Object
Dictionary

Object
DictionarySDO

client

SDO
server

SDO
server

SDO
client

Transmit
PDO

Receive
PDO

Transmit
PDO

Receive
PDO

Sync
Producer

Sync
Consumer

NMT
Master

NMT
Slave

Master

Heartbeat
Consumer

Heartbeat
Producer

Slave

2012-11-18 78

Emergency Protocol

0x80 +
Node-id
(default)

Emergency
Error Code

Err

Reg
Manufacturer specific

dlc = 8

EMCY Producer EMCY consumer(s)

Voltage,
current
problem

Internal
software

error

2012-11-18 79

Pre-defined error field (0x1003)

• The object at index 0x1003 holds the errors that have occurred on the
device and have been signaled via the Emergency Object.

•The entry at sub-index 0 contains the number of actual errors

• Every new error is stored at sub-index 1, the older ones move down
the list.

•Writing a 0 to sub-index 0 deletes the entire error history (empties the
array).

2012-11-18 80

Node functionality

Configuration tool

Node ID
Node ID

Object
Dictionary

Object
DictionarySDO

client

SDO
server

SDO
server

SDO
client

Transmit
PDO

Receive
PDO

Transmit
PDO

Receive
PDO

Sync
Producer

Sync
Consumer

NMT
Master

NMT
Slave

Heartbeat
Consumer

Heartbeat
Producer

Master Slave

Emcy
Consumer

Emcy
Producer

2012-11-18 81

Time Stamp Object

Object Paramter
0x1012 COB-ID (Bit 30: consumer/producer flag)

Time COBID 48 bit timestamp

dlc = 6

Time Producer Time consumer(s)

2012-11-18 82

Node functionality

Configuration tool

Node ID
Node ID

Object
Dictionary

Object
Dictionary

SDO
client

SDO
server

SDO
server

SDO
client

Transmit
PDO

Receive
PDO

Transmit
PDO

Receive
PDO

Sync
Producer

Sync
Consumer

NMT
Master

NMT
Slave

Heartbeat
Consumer

Heartbeat
Producer

Master Slave

Time
Producer

Time
Consumer

Emcy
Consumer

Emcy
Producer

2012-11-18 83

Press release for Device Profile 445
(RFID) example

Erlangen, Germany, Septmeber 4, 2007 -- The CAN in Automation (CiA) nonprofit organization has
released the CiA 445 CANopen device profile for RFID readers/writers. The objective of the profile is to

enable easy system integration of RFID readers into networks in factory automation, laboratory
automation, medical systems, product and asset management, identification systems, etc. The device profile
will make CiA 445-compliant RFID readers from different manufacturers interchangeable with a minimum

of time and configuration effort…

...The following companies have participated in the development of the profile specification within the
CANopen Special Interest Group RFID:

DeLaval International, FH Regensburg, Hans Turck, ifm electronic, Ixxat Automation, RM Michaelides,
Schneider Electric, Sick, Siemens Medical Solutions, Vector Informatik, and others.

2012-11-18 84

EDS (Electronic data Sheet) file
•CiA-306

• The EDS belongs to the standard documents
supplied with a CANopen device.

• A proper EDS file is required to pass the CiA-
CANopen conformance test.

•In the future these files will be replaced by
XML

device descriptions according to ISO 15745
(CiA-311)

•CANeds free-of-charge EDS generator/editor
(www.canopen-forum.com)

EDS example
[FileInfo]

FileName=example1.eds
FileVersion=2

...
[DeviceInfo]

VendorName=xyz
...

BaudRate_50=0
BaudRate_125=1
BaudRate_250=1

...
[3000]

SubNumber=2
ParameterName=Demo_object

ObjectType=8
[3000sub00]

ParameterName=Highest sub-
index supported
ObjectType=0x7
DataType=0x5
AccessType=ro

DefaultValue=0x1
PDOMapping=0

2012-11-18 85

DCF (Device configuration File)
• Equal to a EDS file containg the device configuration paramters.

• Used by Configuration Manager (either stand alone tool
or CANopen Master node).

•Stand alone tool for service engineers: www.tke.fi

• Configuring node standalone prevents node-id overlapping, faulty bitrate
etc. that would cause bus chaos.

2012-11-18 86

DS-302
Framework for Programmable CANopen Devices

CANopen Manager:
{ NMT Master, SDO Manager, Configuration Manager (opt) }

CANopen Manager entries in Object Dictionary:
* Power on bootup configuration (Am I the NMT master ?)
* Slave bootup { network list, device type, serial number,

product code, keep alive (node guard),
application SW version (optional upgrade) }

* Configuration Management (CMT)

This makes it possible
to use third party CANopen
design tools.
2012-11-18 87

Object Dictionary
Object Index Sub Index Data Type Bit contents Description
0x1f26 ARRAY Expected configuration time.

0x1f27 ARRAY Expected configuration date.

0x1f50 ARRAY Download program data.

0x1f51 ARRAY Program Control.

0x1f52 APPL SW Verify application software.

0x1 Application software date.

0x2 Application software time.

0x1f53 ARRAY Expected application sw date.

0x1f54 ARRAY Expected application sw time.

0x1f80 UINT8 NMT Startup

BIT 0 0 = NMT slave, 1 = NMT master.

BIT 1 0 = Start node by node, 1 = start all nodes.

BIT 2 0 = Automatic start, 1 = Application allows start (node local)

BIT 3 0 = Start slaves, 1 = Application starts slave.

BIT 4 0 = slave specific err handling, 1 = Err control event handling

0x1f81 – 0x1f89 ARRAY DS302 Boot Parameters...

0x1fa0 – 0x1fcf ARRAY Object Scanner List (Multiplexed PDOs)

0x1fd0 – 0x1fff ARRAY Object Dispatcher List (Multiplexed PDO)

Advanced CAN

2012-11-18 89

•Controller types.

•Signal levels.

•Oscilloscope pictures.

•Error detectoion

•Connectors

Three types of CAN controllers
Part A and Part B comp ability

There are three types of CAN controllers: Part A, Part B passive and Part B. They are able to handle the different parts
of the standard as follows:

CAN chip type Part A Part B passive Part B

11 bit identifier OK. OK. OK.

29 bit identifier ERROR! Tolerated on the
bus, but ignored.

OK.

2012-11-18 90

Recessive & Dominant levels

CAN_LO

CAN_HI

Recessive signal
(= 2.5V)

Dominant signal
(= 1 – 1.5V)

Dominant signal
(= 3.5 – 4.0V)

Recessive signal
(= 2.5V)

When a logic ‘1’ is written to the bus,
the two wires sit at 2.5V and is
termed a “recessive” bit.

When a logic ‘0’ is written to the bus,
one wire is pulled to 5V (CAN HI)
and the other is pulled down to
ground (CAN LO)

If both lines are at the same voltage, the signal is a recessive bit. If the CAN_HI line is higher than the
CAN_LO line by 0.9V, the signal line is a dominant bit. If just one node is driving the bus to a logical
0 (=dominant bit), then the whole bus is in that state regardless of the number of nodes transmitting a
logical 1.

2012-11-18 91

CAN signals

CAN_LO

CAN_HI

CAN_HI – CAN_LO

2.5 V

1 V

2.5 V

4.0 V

3 V

0 V

2012-11-18 92

1 bit BOSCH-specification
Sync Segment
(Synch_Seg)

Propagation segment
(Prop_Seg)

Phase Segment 1
(Phase_Seg1)

Phase Segment 2
(Phase_Seg2)

1 TQ Prop_Seg TQ
(1 – 8)

Phase_Seg1 TQ Phase_Seg2 TQ

1 bit
TQ = Time Quanta

Needed to
compensate for
the delay in the

bus lines

These segments can be used lengthened
or shortened by resynchronisation

2012-11-18 93

1 bit on ISO11898-specification
Sync Segment
(Synch_Seg)

Propagation segment
(Prop_Seg)

Phase Segment 1
(Phase_Seg1)

Phase Segment 2
(Phase_Seg2)

1 TQ

Prop_Seg TQ Phase_Seg1 TQ Phase_Seg2 TQ

1 bit
Needed to

compensate for
the delay in the

bus lines

These segments can be used lengthened
or shortened by resynchronisation

TSEG2 TQTSEG1 TQ
2012-11-18 94

Sample point per bit

1 TQ TSEG2 TQTSEG1 TQ

Sample point

2012-11-18 95

Bitrate settings

n = SYNCHSEG+TSEG1+TSEG2

Bitrate =
fcrystal

2*n*(BRP+1)

BRP = value of the Bit rate Prescaler
(register in the CAN controller)

2012-11-18 96

Resync and SJW

Hard resynchronization

Resynchronization within a frame

2012-11-18 97

Typical settings…

2012-11-18 98

The five error checks…

• Bit monitoring (read back)

→ Error Frame → Automatic retransmission

• Bit stuffing (toggle required)
• Frame check (predefined values)
• Acknowledgement check (received?)

• CRC check.

2012-11-18 99

Form- and biterror

• Form error

EOF INTERFRAME SPACE
A
C
D

A
C
K

C
R
D

15-BIT CRC0 ... 8 DATA
BYTES

DLC
R
E
S

11-BIT IDENTIFIER
I
D
E

R
T
R

S
O
F

If a bit is written onto the bus and its compliment is read back
a “Bit error” is generated (DOES NOT APPLY to
IDENTIFIER or ACK-bit)

• Bit error

2012-11-18 100

Start of frame = 0 CRC delimiter=1 ACK delimiter=1

EOF=1
IDE = Extended Id
RES = RESERVED

Bit stuffing error

11 1 1

1 1 11

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

2012-11-18 101

Acknowledgement check

CRC check and the acknowledge slot (”Form error”,
“bit stuffing error”, ”CRC error”, ”Ack Error”)

EOF INTERFRAME SPACE
A
C
D

A
C
K

C
R
D

15-BIT CRC0 ... 8 DATA
BYTESDLC

R
E
S

11-BIT IDENTIFIER
I
D
E

R
T
R

S
O
F

Transmitter:

A
C
K

Receiver:

Recessive.

Dominant if OK.

2012-11-18 102

CAN error frame

11 1 10 0 0 0 0 0 1 1 1 1 11

6 - 12 8 Interframe space

2012-11-18 103

CAN controller error modes

• Error active
Tx error counter <= 127 AND Rx error counter
<= 127

• Error passive
(Tx error counter > 127 OR Rx error counter >
127) AND Tx error counter <= 255.

• Bus off
(Tx error counter > 255)

2012-11-18 104

CAN connectors

2012-11-18 105

Pin # Signal Names Signal Description

1 Reserved Upgrade Path

2 CAN_L CAN Low

3 CAN_GND Ground

4 Reserved Upgrade Path

5 CAN_SHLD Shield, Optional

6 GND Ground, Optional

7 CAN_H CAN Hign

8 Reserved Upgrade Path

9 CAN_V+ Power, Optional

RJ45
Pin #

RJ10 Pin
Signal Name Signal Description

1 2 CAN_H CAN High

2 3 CAN_L CAN Low

3 4 CAN_GND Ground

4 - Reserved Upgrade Path

5 - Reserved Upgrade Path

6 - CAN_SHLD CAN Shield, Optional

7 - CAN_GND Ground

8 1 CAN_V+ Power, Optional

http://www.erni.com/DB/PDF/M8M12/ERNI-M8M12-e.pdf

One logic to several physical

2012-11-18 106

Contact: sales@datalink.se

Rx error counter rules
• Receiver detects error (any): the Rx error counter will be increased by 1,
except when the detected error was a bit error during the sending of an active
error flag or an overload flag (=this specific node did not see the error that an
other node saw).

• Receiver detects a dominant bit as the first bit after sending an error flag:
the Rx error counter will be increased by 8.

• If a receiver detects a bit error (“what was written was not read”) while
sending an active error flag or an overload flag the Rx error counter is
increased by 8.

• After the successful reception of a message (reception without error up to
the acknowledge slot and the successful sending of the acknowledge bit), Rx
error counter is decreased by 1 if it was between 1 and 127. If Rx error
counter was 0 it stays 0, and if it was greater than 127, it will be set to a
value between 119 and 127.

2012-11-18 107

Tx error counter rules

• When a transmitter sends an error flag, the Tx error counter is increased by
8. Important exception: If a node is the only one on the bus (or during start-up the only
one that has become active), and it transmits a message, it will get an
acknowledgement error, and will retransmit the message. This may lead to that node
going to error passive mode – but it will not go bus off (=“oscillate”)

• If a transmitter detects a bit error while sending an active error flag or an
overload flag, the Tx error counter is increased by 8.

• After the successful transmission of a message (getting ack and no error
until end of frame is finished) Tx error counter is decreased by 1 unless it was
already 0.

2012-11-18 108

Advanced CANopen

2012-11-18 109

•Multiplex PDO.

•Object Dispatcher List.

•Object Scanner List.

Multiplexed PDO

•Multiplexed PDOs are SDO/PDO hybrids for
objects with a size of 1 – 32bits.

• Write to any OD entry (1-32 bits) on remote
node without using SDO transfer.

2012-11-18 110

Multiplexed PDO types

• Destination Addressing Mode MPDO
(DAM MPDO)

• Source Addressing Mode MPDO
(SAM MPDO)

2012-11-18 111

DAM MPDO
Destination Addressing Mode Multiplexed PDO

COBID Object Index
destination node

Value to be written

1 byte 2 byte 4 byte

8 byte

0x80 +
dest.
nodeId

Sub
Index

dest node
1 byte

Object Index Sub Index Data Type Value

1x1600 – 0x17ff 0 (no. obj to me mapped) UINT8 255 (=DAM MPDO)

… … … …

0x1a00 – 0x1bff 0 (no. obj to me mapped) UINT8 255 (=DAM MPDO)

PDO mapping parameters RPDO.

PDO mapping parameters TPDO.

Normal PDO:s are
only 0..642012-11-18 112

SAM MPDO
Source Addressing Mode Multiplexed PDO

COBID Object Index
source node

Value to be written

1 byte 2 byte 4 byte

8 byte

source
node Id

Sub
Index

src node
1 byte

Object Index Sub Index Data Type Value

1x1600 – 0x17ff 0 (no. obj to me mapped) UINT8 254 (=SAM MPDO)

… … … …

0x1a00 – 0x1bff 0 (no. obj to me mapped) UINT8 254 (=SAM MPDO)

PDO mapping parameters RPDO.

PDO mapping parameters TPDO.

?

Normal PDO:s are
only 0..64

2012-11-18 113

Object Dispatcher List
(used when node receive a SAM-MPDO)

COBID SAM
MPDO

Object Index
source node

Value to be writtensource
node Id

Sub
Index

src node

Object dispatcher list

Object Index
local object index

Value to be written
Sub

Index
local node

Object Dictionary
2012-11-18 114

Object Dispatcher List
(object used for configuring)

Object Index Sub Index Data Type Description
0x1fd0 – 0x1fff 0 UINT8 Number of configured dispatchers

0x1 UINT64 Object Dispatching 1

-- 0xfe UINT64 Object Dispatching ...254

Block
size

Local
Index

Local
subIdx

Sender Index Sender
subIndex

Sender
node ID

8 bits 16 bits 16 bits8 bits 8 bits 8 bits

2012-11-18 115

Object Scanner List
(used when node transmits SAM-MPDO)

COBID SAM
MPDO

Object Index
source node

Value to be writtensource
node Id

Object Scanner List

”Event” (Sync?, Timer driven?, Event
driven?...) to transmit SAM TMPDO n

COBID SAM
MPDO

Object Index
source node

Value to be writtensource
node IdCOBID SAM

MPDO
Object Index
source node

Value to be writtensource
node IdCOBID SAM

MPDO
Object Index
source node

Value to be writtensource
node Id

Sub
Index

src node

2012-11-18 116

Object Dispatcher List
(object used for configuring)

Object Index Sub Index Data Type Description
0x1fd0 – 0x1fff 0 UINT8 Number of configured dispatchers

0x1 UINT32 Object Dispatching 1

-- 0xfe UINT32 Object Dispatching ...254

Block
size

Local
Index

Local
subIdx

8 bits 16 bits 8 bits

2012-11-18 117

Transmission Type

Object Index Sub Index Data Type Bit contents

0x1801 1 (COBID) UINT32 0x123

0x1801 2 (Transmission time) UINT8 254

0x1801 3 (Inhibit time) UINT16 100 (*10us)

0x1801 4 () 0 0

0x1801 5 (Event timer) UINT16 1000 (*1ms)

Transmission
Type

Meaning for a transmit PDO Meaning for a receive PDO

0 Sent on next SYNC if event or request has been made. Application updated on next SYNC.

1 < n < 240 Sent on every n SYNC Application updated on next SYNC.

241 <= n < 252 UNDEFINED UNDEFINED

252 Sent on next SYNC if PDO has been requested. UNDEFINED

253 Sent independent of SYNC upon request. UNDEFINED

254 -255 Sent independent of SYNC in all cases Application is updated upon reception of PDO

2012-11-18 118

